Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Measurements of the carbon-to-oxygen (C/O) ratios of exoplanet atmospheres can reveal details about their formation and evolution. Recently, high-resolution cross-correlation analysis has emerged as a method of precisely constraining the C/O ratios of hot Jupiter atmospheres. We present two transits of the ultrahot Jupiter WASP-76b observed between 1.4 and 2.4μm with the high-resolution Immersion GRating INfrared Spectrometer on the Gemini-S telescope. We detected the presence of H2O, CO, and OH at signal-to-noise ratios of 6.93, 6.47, and 3.90, respectively. We performed two retrievals on this data set. A free retrieval for abundances of these three species retrieved a volatile metallicity of , consistent with the stellar value, and a supersolar carbon-to-oxygen ratio of C/O . We also ran a chemically self-consistent grid retrieval, which agreed with the free retrieval within 1σbut favored a slightly more substellar metallicity and solar C/O ratio ( and C/O ). A variety of formation pathways may explain the composition of WASP-76b. Additionally, we found systemic (Vsys) and Keplerian (Kp) velocity offsets which were broadly consistent with expectations from 3D general circulation models of WASP-76b, with the exception of a redshiftedVsysfor H2O. Future observations to measure the phase-dependent velocity offsets and limb differences at high resolution on WASP-76b will be necessary to understand the H2O velocity shift. Finally, we find that the population of exoplanets with precisely constrained C/O ratios generally trends toward super-solar C/O ratios. More results from high-resolution observations or JWST will serve to further elucidate any population-level trends.more » « less
- 
            Abstract AU Microscopii (AU Mic) is an active 24 ± 3 Myr pre-main-sequence M dwarf in the stellar neighborhood (d= 9.7 pc) with a rotation period of 4.86 days. The two transiting planets orbiting AU Mic, AU Mic b and c, are warm sub-Neptunes on 8.5 and 18.9 day periods and are targets of interest for atmospheric observations of young planets. Here we study AU Mic’s unocculted starspots using ground-based photometry and spectra in order to complement current and future transmission spectroscopy of its planets. We gathered multicolor Las Cumbres Observatory (LCO) 0.4 m SBIG photometry to study the star's rotational modulations and LCO Network of Robotic Echelle Spectrographs high-resolution spectra to measure the different spectral components within the integrated spectrum of the star, parameterized by three spectral components and their coverage fractions. We find AU Mic’s surface has at least two spectral components: aTamb= K ambient photosphere and cool spots that have a temperature ofTspot= K, covering a globally averaged area of 39% ± 4% which increases and decreases by 5.1% ± 0.3% from the average throughout a rotation. We also detect a third flux component with a filling factor less than 0.5% and a largely uncertain temperature between 8500 and 10,000 K that we attribute to flare flux not entirely omitted when time averaging the spectra. We include measurements of spot characteristics using a two-temperature model, which we find agree strongly with the three-temperature results. Our expanded use of various techniques to study starspots will help us better understand this system and may have applications for interpreting the transmission spectra for exoplanets transiting stars of a wide range of activity levels.more » « less
- 
            Ruane, Garreth J (Ed.)HISPEC is a new, high-resolution near-infrared spectrograph being designed for the W.M. Keck II telescope. By offering single-shot, R 100,000 spectroscopy between 0.98 – 2.5 μm, HISPEC will enable spectroscopy of transiting and non-transiting exoplanets in close orbits, direct high-contrast detection and spectroscopy of spatially separated substellar companions, and exoplanet dynamical mass and orbit measurements using precision radial velocity monitoring calibrated with a suite of state-of-the-art absolute and relative wavelength references. MODHIS is the counterpart to HISPEC for the Thirty Meter Telescope and is being developed in parallel with similar scientific goals. In this proceeding, we provide a brief overview of the current design of both instruments, and the requirements for the two spectrographs as guided by the scientific goals for each. We then outline the current science case for HISPEC and MODHIS, with focuses on the science enabled for exoplanet discovery and characterization. We also provide updated sensitivity curves for both instruments, in terms of both signal-to-noise ratio and predicted radial velocity precision.more » « less
- 
            Abstract JWST has ushered in an era of unprecedented ability to characterize exoplanetary atmospheres. While there are over 5000 confirmed planets, more than 4000 Transiting Exoplanet Survey Satellite (TESS) planet candidates are still unconfirmed and many of the best planets for atmospheric characterization may remain to be identified. We present a sample of TESS planets and planet candidates that we identify as “best-in-class” for transmission and emission spectroscopy with JWST. These targets are sorted into bins across equilibrium temperatureTeqand planetary radiusRpand are ranked by a transmission and an emission spectroscopy metric (TSM and ESM, respectively) within each bin. We perform cuts for expected signal size and stellar brightness to remove suboptimal targets for JWST. Of the 194 targets in the resulting sample, 103 are unconfirmed TESS planet candidates, also known as TESS Objects of Interest (TOIs). We perform vetting and statistical validation analyses on these 103 targets to determine which are likely planets and which are likely false positives, incorporating ground-based follow-up from the TESS Follow-up Observation Program to aid the vetting and validation process. We statistically validate 18 TOIs, marginally validate 31 TOIs to varying levels of confidence, deem 29 TOIs likely false positives, and leave the dispositions for four TOIs as inconclusive. Twenty-one of the 103 TOIs were confirmed independently over the course of our analysis. We intend for this work to serve as a community resource and motivate formal confirmation and mass measurements of each validated planet. We encourage more detailed analysis of individual targets by the community.more » « less
- 
            ABSTRACT We present the discovery and characterization of six short-period, transiting giant planets from NASA’s Transiting Exoplanet Survey Satellite (TESS) -- TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642), TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), and TOI-2497 (TIC 97568467). All six planets orbit bright host stars (8.9 <G < 11.8, 7.7 <K < 10.1). Using a combination of time-series photometric and spectroscopic follow-up observations from the TESS Follow-up Observing Program Working Group, we have determined that the planets are Jovian-sized (RP = 0.99--1.45 RJ), have masses ranging from 0.92 to 5.26 MJ, and orbit F, G, and K stars (4766 ≤ Teff ≤ 7360 K). We detect a significant orbital eccentricity for the three longest-period systems in our sample: TOI-2025 b (P = 8.872 d, 0.394$$^{+0.035}_{-0.038}$$), TOI-2145 b (P = 10.261 d, e = $$0.208^{+0.034}_{-0.047}$$), and TOI-2497 b (P = 10.656 d, e = $$0.195^{+0.043}_{-0.040}$$). TOI-2145 b and TOI-2497 b both orbit subgiant host stars (3.8 < log g <4.0), but these planets show no sign of inflation despite very high levels of irradiation. The lack of inflation may be explained by the high mass of the planets; $$5.26^{+0.38}_{-0.37}$$ MJ (TOI-2145 b) and 4.82 ± 0.41 MJ (TOI-2497 b). These six new discoveries contribute to the larger community effort to use TESS to create a magnitude-complete, self-consistent sample of giant planets with well-determined parameters for future detailed studies.more » « less
- 
            Abstract The James Webb Space Telescope will be able to probe the atmospheres and surface properties of hot, terrestrial planets via emission spectroscopy. We identify 18 potentially terrestrial planet candidates detected by the Transiting Exoplanet Survey Satellite (TESS) that would make ideal targets for these observations. These planet candidates cover a broad range of planet radii ( R p ∼ 0.6–2.0 R ⊕ ) and orbit stars of various magnitudes ( K s = 5.78–10.78, V = 8.4–15.69) and effective temperatures ( T eff ∼ 3000–6000 K). We use ground-based observations collected through the TESS Follow-up Observing Program (TFOP) and two vetting tools— DAVE and TRICERATOPS —to assess the reliabilities of these candidates as planets. We validate 13 planets: TOI-206 b, TOI-500 b, TOI-544 b, TOI-833 b, TOI-1075 b, TOI-1411 b, TOI-1442 b, TOI-1693 b, TOI-1860 b, TOI-2260 b, TOI-2411 b, TOI-2427 b, and TOI-2445 b. Seven of these planets (TOI-206 b, TOI-500 b, TOI-1075 b, TOI-1442 b, TOI-2260 b, TOI-2411 b, and TOI-2445 b) are ultra-short-period planets. TOI-1860 is the youngest (133 ± 26 Myr) solar twin with a known planet to date. TOI-2260 is a young (321 ± 96 Myr) G dwarf that is among the most metal-rich ([Fe/H] = 0.22 ± 0.06 dex) stars to host an ultra-short-period planet. With an estimated equilibrium temperature of ∼2600 K, TOI-2260 b is also the fourth hottest known planet with R p < 2 R ⊕ .more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
